2023 年度湖南省"楚怡杯"职业院校技能竞赛赛项规程

一、赛项名称

1. 赛项名称: 工业设计技术

2. 赛项组别: 高职高专组

3. 赛项归属: 装备制造大类

二、竞赛内容

参赛选手利用三维扫描仪扫描获得给定产品外形的"实样"点云后,进行三维逆向建模和产品创新再设计,生成产品装配图及零件图,采用 CNC 机床和 3D 打印设备将"创新产品"零部件加工出来,再进行"创新产品"装配验证,实现从"实样"到"创新产品"的研发和制造过程。具体竞赛任务和要求如下:

1. 竞赛任务

本赛项进行实操竞赛,共有六个竞赛任务,分二个阶段完成。第一阶段完成产品数字化创新设计,分三维数据采集、逆向建模与创新设计三个竞赛任务,第二阶段完成创新产品制造与功能验证,分3D打印、CNC编程与加工和装配验证三个任务。各阶段任务如下:

第一阶段:产品数字化创新设计

任务1:三维数据采集

依据赛项任务书的要求,对赛场提供的三维扫描装置进行标定,并提交标定成功的结果文档;利用标定成功的扫描仪和附件对任务书指定的实物进行扫描,获取点云数据;对获得的点云进行相应取舍,剔除噪点和冗余点后提交点云文件。

任务 2: 逆向建模

依据赛项任务书的要求,利用任务 1 所采集的点云数据,使用赛场提供的逆向建模软件,对实物外表面进行三维数字化建模,并提交三维建模和二维图形文件。对逆向建模的模型进行数字模型精度对比(包含 3D 比较、2D 比较、创建 2D 尺寸),形成并提交分析报告。

任务 3: 创新设计

依据赛项任务书的要求,利用给定的实物和任务 2 所建数字化模型,结合机械设计等相关知识,按任务书要求进行结构和功能创新设计,生成装配图及零件图,并提交图形文档。选手结合设计任务要求采用图文结合的方式,从设计方案的人性化、美观性、合理性、可行性、工艺性、经济性等方面闸述创新设计的思路及设计结果,编写并提交创新设计方案说明书。

第二阶段: 创新产品制造与功能验证

任务 4: 3D 打印

依据赛项任务书的要求,利用赛场提供的 3D 打印机及软件,对任务书中指定的实体建模文件进行封装和打印参数设置,打印出样件。将打印好的样件进行去支撑、表面修整等后处理,以保证零件质量达到要求。

任务 5: CNC 编程与加工

依据赛项任务书的要求,利用赛场提供的机床、毛坯等加工条件,对任务书中指定的样件进行工艺分析,确定加工工艺过程,编制加工工艺文件并提交。利用赛场提供的 CAD/CAM 软件和自带的工量刀具,根据加工工艺文件编制数控加工程序,并完成样件的加工。

任务 6: 装配验证

依据赛项任务书的要求,将加工得到的样件,与其它实物或机构装配为一个整体,验证创新设计效果后提交。

2. 竞赛要求

2.1 技术要求

- (1) 需同时提交符合模板的 WORD 文件和对应的 PDF 文件。
- (2) 在任务1中,不可对未扫描到的位置进行补缺;不可使用逆向模型反推点云数据。
- (3) 在任务 2 中,需合理还原产品数字模型,要求特征拆分合理,转角衔接圆润;不得使用整体拟功能进行建模。实物的表面特征不得改变,数字模型比例(1:1)不得改变,可对实物的孔表面可做光滑处理。
 - (4) 在第二阶段比赛中,禁止修改第一阶段提交的产品和零件模型。

2.2 职业素养要求

- (1) 操作设备的规范性
- (2) 工量刀具的使用规范
- (3) 安全防护及安全文明生产
- (4) 完成任务的计划性、条理性
- (5) 尊重他人、爱护财物
- (6) 保持寨位的整洁
- (7) 绿色环保、循环利用

三、竞赛方式

个人赛。

四、竞赛时量

比赛分成两个阶段, 共480分钟, 各阶段竞赛时间分配见表1。

 各阶段任务
 分配时间
 备注

 第一阶段 产品数字化创新设计
 300 分钟
 不限制每个阶段内各项任务的完成时间。 在第二阶段比赛中,禁止修改第一阶段提 交的产品和零件模型。

表1 各阶段竞赛时间分配表

五、名次确定办法

竞赛名次按照竞赛总成绩(保留小数点后两位)从高到低排序确定,不设并列名次。总分相同时,以完成时间短者名次列前;总分和完成时间均相同时,以"任务3"得分高者名次列前,依次根据"任务2、4、5、6"的得分高者名次列前。

六、评分标准与评分细则

1. 评分标准

满分 100 分,总成绩为六个竞赛任务和职业素养的得分之和。具体评分项目及配分见表 2。

表2 评分标准

竞赛阶段及权重	任务名称	评分项目	分值
第一阶段:	任务 1 三维数据采集	扫描仪标定,三维数据采集。	10分
产品数字化 创新设计	任务 2 逆向建模	三维逆向建模,数字模型精度对比,分析报告。	20分
(65%)	任务 3 创新设计	进行功能和结构创新设计,生成装配工程图及零件 工程图,编写创新设计方案说明书。	35 分
第二阶段: 创新产品制 造与功能验 证(30%)	任务 4 3D 打印	根据实体建模文件进行封装和打印参数设置,打印 出样件,将打印好的样件进行去支撑、表面修整等 后处理,以保证样件质量达到要求。	7分
	任务 5 CNC 编程与加工	编制加工工艺文件和数控程序,进行样件加工。	18分
	任务 6 装配验证	创新产品装配,验证创新设计的效果。	5分
职业素养(5%)		安全文明生产、操作规范、绿色环保、循环利用。	5 分

2. 评分细则

具体评分细则见表 3。

表 3 评分细则

阶段	任务	任务名称 (一级指标)	评分标准(二级指标)	分值
		三维数据采集	扫描仪采集系统调整与标定(未正确完成不得分)	1分
	任务		扫描点云数据完整性	6分
	1		扫描数据处理效果	3 分
		逆向建模 (20 分)	数据定位合理性 (不合理不得分)	2分
	任务		模型特征的完成度	6分
第一阶段	2		特征拆分合理性 (不合理不得分)	3 分
产品数字			特征完成精确度	6分
化创新设			数字模型对比(报告): (不符合要求不得分)	3 分
计 (65%)	任务 创新设计 3 (35分)		外观设计: 艺术性(2分)、人性化(2分)、符合绿色制造(2分)	6分
		かけずだされます。	结构设计: 合理性(3分)、工艺性(3)、经济性(1分)	7分
			功能设计: 合理性(5分)、创新性(3分)	8分
		图纸表达: 装配图质量(4分)、零件图质量(6分)	10分	
		创新设计方案说明书:符合创新设计要求(2分)、 文字表达逻辑清晰、规范且排版合理(2分)	4分	

阶段	任务	任务名称 (一级指标)	评分标准(二级指标)	分值
	に々	3D +TCI	3D 打印机基本操作(能够打印零件即得分)	2分
	任务	3D 打印	3D 打印件的完整性	3 分
	4	(7分)	3D 打印件的质量(不符合要求不得分)	1分
&& → UV LU			3D 打印件的后处理效果(不符合要求不得分)	1分
第二阶段:			机床基本操作(完成一处结构的加工即得分)	2分
创新产品制	任务	CNC 编程与加工	零件加工完成度	6分
造与功能验 证(30%)	5	(18分)	表面粗糙度(超差1处扣0.5分,扣完为止)	2分
UE (30%)			尺寸精度(超差1处扣1分,扣完为止)	6分
			工艺文件: 合理性(1.5分)、规范性(0.5分)	2分
	任务	装配验证	装配工艺完成度及装配质量	2分
	6	(5分)	功能验证	3分
四川, 丰 关			操作设备规范性	1分
职业素养	配分5分		工量具使用规范性	1分
(5%)			现场安全	2分
			文明生产	1分

七、赛点提供的设施设备仪器清单

1. 计算机软硬件平台

1.1 硬件平台

赛场提供同一配置的计算机及软件。硬件基本配置不低于: 双核处理器/4G内存/1T 硬盘/1G 独显/19 寸 LED 显示器。

1.2 软件平台

计算机操作系统: MS-Windows10;

文字处理软件: MS-Office 2010、Adobe reader;

逆向设计软件: Geomagic Design X 2019、Geomagic Control X 2020;

扫描软件系统: Wrap Win3D 三维数据采集系统 V2.0;

正向设计软件: CAXA 3D 实体软件 V2021、CAXA 电子图板软件 V2021、中望 3D 教育版 V2021、中望机械 CAD 教育版 V2021;

加工编程设计软件: CAXA 制造工程师软件 V2020(含后处理)、中望 3D2021 教育版(含后处理),Mastercam 2021 教育版。

2. 赛点提供的仪器设备及工具

2.1 三维扫描设备及附品

比赛用的三维扫描数据采集设备,主要参数见表 4。

表 4 三维扫描设备主要参数

项目	技术参数	
产品型号	Win3DD 单目三维扫描仪	
单幅扫描范围	300×210×200mm	
扫描距离	600mm	
扫描点距	0.2-1.1mm	

项目	技术参数
单幅扫描时间	<3 秒
相机分辨率	130 万像素
扫描精度	L 单幅扫描/对角线长度
球空间误差	0.005+L/15000
球面度误差	0.005+L/40000
平面度误差	0.005+L/25000
扫描方式	非接触式(拍照式)
拼接方式	全自动拼接
输出文件格式	ASC, STL, IGS, OBJ
外形尺寸	325×240×110mm
设备重量	2.5kg
接口	USB
电源	AC220V,50HZ

比赛用的三维扫描附品,如下表5所示。

表 5 三维扫描附品表

项目	规格参数
手动二维转盘	Ф360*6mm
标志点	5mm
黑色背景布	1 平方米
双面胶带	
黑色橡皮泥	
黑色转盘垫块	
量具	0-200mm 游标卡尺 1 把, 自备

2.2 加工用数控机床及附品

比赛用的数控加工中心设备,主要参数见表 6。

表 6 数控加工中心主要参数

项目	单位	技术参数
X 轴行程(工作台左右移动)	mm	≥600
Y 轴行程(工作台前后移动)	mm	≥400
Z 轴行程(主轴箱上下移动)	mm	≥400
主轴鼻端至工作台面距离	mm	120-520
工作台尺寸	mm	≥600×400
主轴转速	rpm	100-6000
快速进给速度(X/Y/Z)	m/min	≥28/28/28
切削进给速度(X/Y/Z)	mm/min	1-8000
刀柄形式		BT40
气压需求	kg/cm2	≥6
数控系统		华中818B

附注: 机床旁配备电脑,安装加工编程软件,电脑只可用于传输和程序编制。

2.3 3D 打印机

3D 打印机主要参数见表 7。

表 7 3D 打印机主要参数

次 / 3D 11 中心上文多数				
项 目	参 数			
机器型号	北京太尔时代科技有限公司 UP 300			
技术原理	熔融沉积(FDM)			
打印尺寸	205× 255× 225 (mm)			
层厚度	0.05—0.40 mm			
打印精度	±0.15mm/100mm			
定位精度	X/Y 轴: 0.002mm, Z 轴: 0.0005mm			
打印速度	5—100cm³/h			
打印平台校准	全自动调平,自动设置喷头高度			
喷头数量	单喷头,风量可调节,模块化设计易于更换			
喷嘴直径	0.2/0.4/0.6mm(赛场使用 0.4mm)			
打印平台	ABS 专用底板,玻璃底板			
支撑结构	智能支撑生成技术: 自动生成易于剥除, 可微调的支撑结构			
耗材直径	1.75mm			
打印耗材	PLA、ABS、ABS+、TPU、PC、PETG、Nylon、ASA、尼龙碳纤维等			
附加功能	空气过滤,断电续打,高温警报,门禁系统, 4.3 寸增强型触摸屏,实			
PI 701-57 FE	现打印暂停、更换丝材、打印恢复、历史文件打印、打印状态显示			
操作(分层)软件	UP Studio			
连接方式	USB、wifi、以太网、U 盘			
操作系统	Win 7/8/10			
识别文件	stl, up3, upp, ups, obj, 3mf, ply, off, 3ds, bmp, jpg, png			
配套软件	UP300 配套软件版本: UP Studio 2.6.49.627			

打印设备附品,见表8。

表 8 3D 打印设备附品表

项目	规格参数	备注
PLA 耗材	500 克, 1 卷	
油灰刀+手套		从打印平台取下模型
尖嘴钳+斜口钳+木工雕刻刀		剥离支撑材料用
内六角扳手		设备维修拆装用

2.4 工具清单

赛场提供工具清单,见表9。

表 9 赛场提供工量具清单

序号	项目及规格	数量
1	平口钳及手柄	1 套
2	橡胶锤规格: D65× 300	1 个
4	中板锉: 修毛刺用	1 把
5	A4纸(供书写讨论用,比赛结束不允许带走)	4 张
6	签字笔	2 支

序号	项目及规格	数量
7	棉布: 供学生清洁工件、提交包装工件用	若干
8	数据传输线	1 根
9	油石	1 块
10	活扳手(10寸)	1 把
11	卸刀器 (BT40)	赛场公共区域提供
12	毛刷	1 把
13	钳工装配台	1 套

另: 1. 赛场公共区域设划线平台一台: 摆放划线高度游标尺一个、划针一个、中心冲一个; 2. 赛场公共区域设小型台式钻床 2 台及以上。

八、选手须知

1. 选手自带工(量) 具及材料清单

选手自带刀具量具及材料清单,见表10。

表 10 选手自带刀具量具及材料清单表

序号	名 称	规格型号	数量
	7/ 77	D16(刀杆)	1
1	飞刀	可转位刀片(铝合金专用刀)片	2 片
	2四畝什人人知加工土	D10	2
2	3刃整体合金铝加工专	D8	2
2	用立铣刀	D6	2
		D8R4	2
	2刃整体合金球头立铣	D6R3	2
3	7	D4R2	2
	/J	D2R1	2
4	钻头	3.3、4、4.2、4.8、5、5.8、9.8	各 2
5	铰刀	Ф5-Н7、Ф6-Н7、Ф10-Н7	各 2
6	丝锥	M4、 M5、 M6	各 2
7	手锯条	中齿	若干
8	刀柄	BT40 刀柄	4
9	1—13	自紧钻夹头	2 个
10	配用拉钉(P40T-I)	P40T-I	4 个
11	刀柄扳手	与刀柄匹配	1 个
12	内六角扳手	(调整飞刀刀片用)	1 套
13	卡套规格	Φ20, Φ16, Φ10, Φ8, Φ6, Φ4, Φ2	1 套
14	手钢锯	自定	1 把
15	光电式寻边器	自定	1 个
16	Z轴对刀仪	自定	1 个
17	百分表及表座	自定	1 套
18	护目镜	自定	1 副
19	垫铁	自定	1 套

2. 主要技术规范及要求

2.1 职业标准

国家职业标准《数控铣工》(国家职业资格三级)

国家职业标准《加工中心操作工》(国家职业资格三级)

国家职业标准《增材制造(3D打印)设备操作员》

2.2 教学标准

高等职业教育 工业设计专业教学标准

高等职业教育 机械设计与制造专业教学标准

高等职业教育 数控技术应用专业教学标准

高等职业教育 机械制造与自动化专业教学标准

2.3 技术标准

GB 18568-2001 加工中心 安全防护技术条件

GB 15760-2004 金属切削机床 安全防护通用技术条件

GB/T 18229-2000 CAD 工程制图规则

GB/T 4458.1-2002 机械制图 图样画法 视图

GB/T 4457.4-2002 机械制图 图样画法 图线

GB/T 4458.4-2003 机械制图 尺寸注法

GB/T 4458.5-2003 机械制图 尺寸公差与配合注法

GB/T 18784.2-2005 CAD/CAM 数据质量保证方法

GB/T 21012-2007 精密加工中心 技术条件

GB/T 15236-2008 职业安全卫生 术语

GB/T 1008-2008 机械加工工艺装备 基本术语

GB/T 6477-2008 金属切削机床 术语

GB/T 4863-2008 机械制造工艺基本术语

GB/T 12204-2010 金属切削 基本术语

GB/T 18726-2011 现代设计工程集成技术的软件接口规范

GB/T 30174-2013 机械安全 术语

GB/T 35076-2018 机械安全 生产设备安全通则

3. 选手注意事项

- 3.1 参赛选手应严格遵守竞赛规则和竞赛纪律,服从裁判员和竞赛工作人员的统一指挥安排,自觉维护赛场秩序,不得因申诉或对处理意见不服而停止比赛, 否则以弃权处理。
- 3.2 参赛选手在赛前熟悉机床和竞赛时间内,应该严格遵守所用设备的工艺守则和安全操作规程,杜绝出现安全事故。
- 3.3 参赛选手不得将通讯工具、任何技术资料、工具书、自编电子或文字资料、笔记本电脑、通讯工具、摄像工具以及其他即插即用的硬件设备带入比赛现场,否则取消选手比赛资格。
 - 3.4 参赛选手应严格按竞赛流程进行比赛。
- 3.5 参赛选手必须持本人身份证、佩戴签发的参赛证,按比赛规定的时间, 到指定的场地参赛。
 - 3.6 技能比赛参赛选手须赛前30分钟到达检录处检录。

- 3.7 由于选手自身原因迟到,不能与本场同步开始比赛,不予补时;裁判长宣布竞赛开始时仍未到场,按弃赛处理。已检录入场的参赛选手未经允许,不得擅自离开。选手提前完成比赛,必须比赛结束方可离开赛场。
- 3.8 参赛选手进入赛位,进行赛前准备。检查毛坯,检查计算机、扫描仪、 数控机床、3D打印机和配套工具,检查软件及设备传输等是否正常。
 - 3.9 赛前5分钟发放赛题,裁判长宣布比赛开始,参赛选手方可进行比赛。
- 3.10 参赛选手在操作技能竞赛过程中应按规定穿戴好防护装备,必须穿工作服、防砸防刺穿劳保工作鞋,佩戴护目镜,女选手要求带工作帽,且长发不得外露。严禁戴手套、手表、戒指、挂坠等物品操作数控机床,不得围布于身上。
 - 3.11 严禁移动或损坏安装在机床上的警告牌。
 - 3.12 操作者应根据机床性能正确使用机床,禁止超性能使用。
 - 3.13 机床开始工作前要认真检查各旋钮及按钮位置是否正常。
- 3.14 使用刀具前应确认是否与机床允许的规格相符,破损的刀具要及时更换。
 - 3.15 加工时, 机床工作台上不许放其它物品, 以防发生事故。
 - 3.16 密切注意工件和刀具的夹紧状态。
 - 3.17 铁屑必须要用工具来清理,严禁徒手抓取。
 - 3.18 禁止用手或其它任何方式接触正在旋转的主轴、工件或其它运动部位。
 - 3.19 加工过程中禁止测量工件、用棉纱擦拭工件及清扫机床。
 - 3.20 机床运转中操作者不得离开岗位, 机床发生异常立即停车。
- 3.21 选手必须在操作步骤完全清楚时进行操作,禁止在不知道规程的情况下进行尝试性操作,如机床出现异常,选手必须立即向裁判员报告。
- 3.22 加工过程中认真观察切削及冷却情况,确保机床、刀具的运行及工件的质量,防止铁屑、冷却液飞溅。
- 3.23 在加工过程中需测量工件尺寸时,要待机床完全停止,主轴停转后方可进行测量,以免发生人身伤害事故。
- 3.24 比赛过程中,选手不得修改机床参数,擅自修改机床参数者一经发现 取消比赛成绩。
- 3.25 参赛选手必须将全部数据文件存储至计算机指定盘符下,不按要求存储数据,导致数据丢失者,责任自负。比赛结束将数据拷入赛场提供的U盘。
- 3.26 比赛过程中,选手若需休息、饮水或去洗手间,一律计算在比赛时间内。
- 3.27 比赛过程中,参赛选手须严格遵守相关操作规程,确保人身及设备安全,并接受裁判员的监督和警示,若因选手个人因素造成人身安全事故和设备故障,不予延时,情节特别严重者,由裁判长视具体情况作出处理决定(最高至终止比赛)并上报大赛执委会批准后执行。
- 3.28 参赛选手在比赛过程中不得擅自离开赛场,如有特殊情况,需经现场裁判长同意后,特殊处理。
- 3.29 比赛过程中,参赛选手不能更换毛坯,也不能相互借用工量具。各参赛选手间不能走动、交谈。比赛过程中出现机床故障等设备问题,应提请现场裁判长到工位处确认原因。若因非选手个人因素造成设备故障导致中断或终止比赛,由现场裁判视具体情况作出延时或更换备用赛位等处理意见,须由现场裁判长批准后执行,并由选手在赛场记录表上确认(按手印)。
 - 3.30 裁判长在比赛结束前15分钟对选手做出时间提醒。裁判长宣布竞赛结

束后,选手应立即停止比赛。

- 3.31 比赛结束,选手应立即清理赛件,3分钟之内选手必须前往收件处提交整套赛件(包括未加工的毛坯)、U盘、加密号信封以及所有赛题、图纸、评分表、草稿纸等。赛件提交后,现场收件裁判和选手在交件记录表上签字确认。
- 3.32 提交赛件后,选手应立即清理现场(包括机床和工作台及周边卫生),清点赛位配置的物品,经裁判和工作人员确认后方可离场,不得将草稿纸以及其他与比赛相关的物品带离赛场。此项工作将在选手职业素养环节进行评判。选手离场时用赛位证换回身份证、参赛证。
- 3.33 参赛选手在竞赛期间未经的批准,不得接受其他单位和个人进行的与竞赛内容相关的采访;参赛选手不得私自公开比赛相关资料。

4. 竞赛直播

- 4.1 赛点提供全程无盲点录像。
- 4.2 可在赛点指定区域通过网络监控观摩比赛。

九、样题(竞赛任务书)

样题附后,样题仅供参考,产品模型跟正式赛题无关!

2023 年度湖南省"楚怡杯"职业院校技能竞赛

高职高专组装备制造类工业设计技术赛项

[时量: 480 分钟, 试卷号:]

(样卷)

竞

赛

任

务

书

场次号: ______ 机位号 (工位号、顺序号): _____。 2022 年 12 月 日

注意事项

- 1. 参赛选手在比赛过程中应该遵守相关的规章制度和安全守则, 如有违反,则按照相关规定在考试的总成绩中扣除相应分值。
- 2. 参赛选手的比赛任务书用参赛证号、组别、场次、工位号标识, 不得写有姓名或与身份有关的信息,否则视为作弊,成绩无效。
- 3. 比赛任务书当场启封、当场有效。比赛任务书按一队一份分发, 竞赛结束后当场收回,不允许参赛选手带离赛场,也不允许参赛选手 摘录有关内容,否则按违纪处理。
 - 4. 比赛分成两个阶段, 共480分钟, 各阶段竞赛时间分配, 见表1。 表1. 各阶段竞赛时间分配表

5. 请在比赛过程中注意实时保存文件, 由于参赛选手操作不当而

- C1 日//1入/3日交 11-1/1 日B/C										
各阶段任务	分配时间	备注								
第一阶段 数字化设计	300 分钟	不限制每个阶段内各项任务的完成时间。 在第二阶段比赛中,禁止修改第一阶段提								
第二阶段 加工与装配	180 分钟	交的产品和零件模型。								

6. 在提交的电子文档上不得出现与选手有关的任何信息或特别记号,否则将视为作弊。

造成计算机"掉电"、"死机"、"重新启动"、"关闭"等一切问

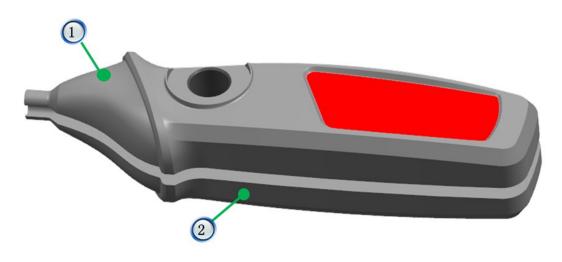
- 7. 若出现恶意破坏赛场比赛用具或影响他人比赛的情况,取消全队竞赛资格。
- 8. 请参赛选手仔细阅读任务书内容和要求, 竞赛过程中如有异议, 可向现场裁判人员反映, 不得扰乱赛场秩序。
 - 9. 遵守赛场纪律, 尊重考评人员, 服从安排。

题,责任自负。

10. 赛场发放两个 U 盘。所有比赛文件保存两个 U 盘的根目录中一份, 计算机 D 盘根目录中一份, 第一阶段比赛完毕提交 U 盘, 分别装入两个信封封好, 选手和裁判共同签字确认。其中一个 U 盘供裁判

进行第一阶段竞赛评分用,另一个 U 盘供选手第二阶段竞赛时使用。

11. 加工后的零件按照要求装配后装入工具箱封好,选手和裁判共同签字确认。


一、任务名称与时间

- 1. 任务名称:某型电动雕刻笔创新设计与制造。
- 2. 竞赛时间: 480 分钟。

二、已知条件

电动雕刻笔利用交流电频率周期特性,产生受迫振动,使打印针高频震动,从而在工件上刻划出一定深度的标记,广泛适用于金属、玉器、玻璃、塑料、大理石、瓷器等材料表面上进行雕刻、打标或签名。

某型电动雕刻笔如图 1 所示,自投放市场以来,根据客户要求电动雕刻笔调速钮与开关一体化设计和增加壳体强度,拟对电动雕刻笔进行再设计。

1-壳体(正面) 2-壳体(反面)

图 1 电动雕刻笔示意图

电动雕刻笔基本情况:

电动雕刻笔主要由壳体、振动源和打印针等组件构成。外形尺寸长度约250mm,外形为多个规则和不规则平面或曲面构成,重量约0.50kg。

三、数字化设计阶段任务、要求和提交成果任务1 实物三维数据采集(10分)

1. 标定

参赛选手利用赛场提供的三维扫描装置和标定板,根据三维扫描 仪使用要求,进行三维扫描仪标定。要求自行认定至三维扫描仪"标 定成功"状态。并将该状态截屏保存,格式采用图片 ipg 或 bmp 文件。

提交: 标定成功截图,格式为 jpg 或 bmp 文件,文件名为"11bd"。 提交位置:现场给定 2 个 U 盘,将"11bd"保存在 U 盘中根目录中一份,电脑 D 盘根目下备份一份,其它地方不准存放。

2. 数据采集

参赛选手使用自行认定"标定成功"的三维扫描仪和附件,完成 给定的电动雕刻笔壳体外表面扫描,并对获得的点云进行取舍,剔除 噪点和冗余点。

提交: 经过去舍后点云电子文档,格式为 asc 文件,文件名命名为"12dy",及封装后的电子文档 stl 文件,文件命名为"13sm"。提交位置: U 盘根目录一份,电脑 D 盘根目录下备份一份,其它地方不准存放。

注意事项:

- (1) 文件名不得出现工位号。
- (2) 扫描数据与标准数字模型进行比对,组成面的点基本齐全 (以点足以建立曲面为标准),并且平均误差小于 0.06 为得分。平 均误差大于 0.10 为不得分,中间状态酌情给分。
- (3) 不得拆卸封装好的壳体, 封装螺钉已加封石蜡, 若发现石蜡被破坏竞赛成绩记零分。
 - (4) 未扫描到的位置不可以进行补缺。
 - (5) 利用逆向模型反推的点云数据不给分。

任务2 逆向建模(20分)

1. 逆向建模: 利用任务1采集的点云数据,使用逆向建模软件, 对电动雕刻笔壳体外表面进行三维数字化建模。

提交:

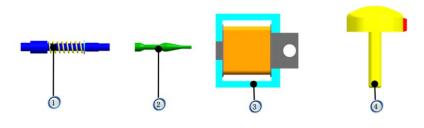
- (1) 对齐坐标后用于建模的"stl"文件,命名为"21jm"。
- (2) 电动雕刻笔壳体数字模型的建模源文件和"stp"文件,命名为"21 jm"。
- (3) 提交位置:保存在 U 盘根目录一份,电脑 D 盘根目录下备份一份,其它地方不准存放。

注意事项:

- (1) 合理还原产品数字模型,要求特征拆分合理,转角衔接圆润。优先完成主要特征,在完成主要特征的基础上再完成细节特征。整体拟合不得分。
 - (2) 实物的表面特征不得改变,数字模型比例(1:1)不得改变。
 - (3) 实物的孔表面可做光滑处理。
- 2. 数字模型精度对比: 利用 Geomagic Control 软件功能,做出数字模型精度对比报告(Geomagic Control 报告)。逆向建模完成后,使用"Geomagic Control"软件分别进行模型的 3D 比较(建模STL 与逆向结果)、2D 比较(指定位置)及创建 2D 尺寸(指定位置并标注主要尺寸),创建"pdf"格式分析报告。

提交:对比文件采用"pdf"格式文件,文件命名为"23db"。 提交位置:保存在U盘根目录中一份,电脑D盘根目录下备份一份, 其它地方不准存放。

注意: 创建的模型与扫描数据进行比对,平均误差小于 0.08。面建模质量好、合理拆分特征、拟合度高的得分。平均误差大于 0.20 不得分,中间状态酌情给分。


任务3 创新设计(35分)

1. 雕刻笔壳体设计

选手利用预装好的建模软件,根据"任务2"完成的数字模型和 给定的电动雕刻笔功能部件,结合产品结构、机械制图、数控加工等 专业知识,按数控加工工艺、强度、装配等技术要求,进行电动雕刻 笔壳体设计,输出装配工程图和零件工程图。

2. 调速钮开关一体化电动雕刻笔设计

电动雕刻笔组件如图 2 所示。

1-打印头 2-连接杆 3-振动源 4-调速钮开关 图 2 电动雕刻笔组件示意图

选手利用预装好的建模软件,根据给定的电动雕刻笔功能部件尺寸,结合产品结构、人体工程学、3D打印等专业知识,按照3D打印工艺、强度、装配等技术要求,进行调速钮开关一体化电动雕刻笔设计。

3. 撰写调速钮开关一体化电动雕刻笔创新设计方案说明书

充分利用竞赛赛场给定的条件和工具,采用文字和图片结合形式, 应采用规范技术术语,言简意赅的语言,撰写调速钮开关一体化电动 雕刻笔设计报告书,描述创新设计思路。要求逻辑性强,排版整齐美 观。

提交:

- (1) 调速钮开关一体化电动雕刻笔虚拟装配源文件和"stp"格式文件,文件命名为"31zp"。
- (2) 调速钮开关一体化电动雕刻笔装配工程图源文件和"dwg"格式文件,文件命名为"32zp。
- (3)调速钮开关一体化电动雕刻笔(正面)零件工程图源文件和"dwg"格式文件,文件命名为"331j"。
- (4) 创新设计方案说明书文件保存为"doc"和"PDF"格式文件,命名为"34cx",文件不准做任何文字、记号、图案特殊标记,否

则按违规处理。

提交位置:保存在 U 盘根目录一份, 电脑 D 盘根目录下备份一份, 其它地方不准存放。

任务 4 3D 打印 (7分)

根据"任务3"调速钮开关一体化电动雕刻笔设计文件进行封装和打印参数设置,打印出样件。将打印好的样件进行去支撑、表面修整等后处理,以保证零件质量达到要求。

注意事项:

禁止修改第一阶段提交的调速钮开关模型, 否则不计分。

任务 5 CNC 编程与加工(18分)

1、制定加工工艺

选手利用预装好的编程软件,根据"任务3"设计的电动雕刻笔 壳体及赛场提供的机床、毛坯、工具和自带的刀量具清单,结合数控 编程、金属切削、机械加工工艺等专业知识,按"任务3"输出的工 程图纸要求进行电动雕刻笔壳体数控加工工艺制定,并填写完成加工 工艺卡(电子档,见附件1)。

提交:

- (1) 附件 1: 加工工艺卡,文件命名为"41gyk",保存"doc"和"PDF"格式。
- (2) 提交位置: U 盘根目录一份, 电脑 D 盘根目录下备份一份, 其它地方不准存放。

2. 进行数控编程

选择赛场提供的 CAD/CAM 软件对产品进行数控编程,生成加工程序并进行仿真加工。

3. CNC 加工

选手利用赛场提供的机床、毛坯和自带的工量具,根据"任务 4" 编制的加工工艺、加工程序,运用数控机床操作技能,按安全、文明 等生产要求,进行电动雕刻笔壳体加工。

注意事项:

- (1) 选手应充分利用比赛现场给定的条件,完成本项任务。
- (2) 选手仅对创新后电动雕刻笔壳体进行加工,否则不计分。
- (3) 禁止修改第一阶段提交的雕刻笔壳体模型,否则不计分。

任务6 装配验证(5分)

将加工得到的样件,与其它实物机构装配为一个整体,验证创新设计的效果。考核选手现场安装与调试能力。要求装配紧密不得松弛。

验证一:

选手利用现场给定的工具,根据"任务5"加工得到电动雕刻笔 壳体、给定的电动雕刻笔功能部件,结合机械装配工艺知识,进行电 动雕刻笔装配,实现动雕刻笔使用功能。

验证二:

选手利用现场给定的工具,根据"任务4"3D打印得到的调速钮 开关一体化电动雕刻笔实体,结合机械装配工艺知识,进行雕刻效果 验证。

提交: 完整装配件。

附件1

加工工艺过程卡

数控车间		加工工艺过程卡			产品名	称零	零部件名称		2	图号	
材料名	材料名称牌号		毛坯种类或 材料规格			产品标识				总工 时	
工序号	エ	序名称	工序简要内容		设备	工艺 装备	量具		工时		
							エ	艺	员	共	页
更改栏							工艺	[室主作	壬	第	页
	更改单号		更改编号	更改者	日期						